Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 347: 123699, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460588

RESUMO

As global air pollution, particularly fine particulate matter (PM2.5), has become a major environmental problem, various PM2.5 mitigation technologies including green infrastructure have received significant attention. However, owing to spatial constraints on urban greening, there is a lack of management plans for urban forests to efficiently mitigate PM2.5. In this study, we assessed the PM2.5 reduction capabilities of Pinus densiflora (Korean red pine) and Quercus acutissima (sawtooth oak) by measuring the changes of PM2.5 concentrations using an experimental chamber system. In addition, the PM2.5 reduction efficiency in 90 min (PMRE90) and the amount of PM2.5 reduction per leaf area (PMRLA) were compared based on arrangement structures and density levels. The results showed that the PM2.5 reduction by plants was significantly greater than that of the control experiment without any plants, and an additional reduction effect of approximately 1.38 times was induced by a 1.5 m s-1 air flow. The PMRE90 of Korean red pine was the highest at medium density. In contrast, the PMRE90 of sawtooth oak was the highest at high density. The PMRLA of both species was highest at low densities. The different responses of the species to total reduction were well explained by total leaf area (TLA). The PMRE90 of both species was positively correlated with TLA. The PMRLA of sawtooth oak was approximately 2.3 times greater than that of Korean red pine. However, there were no significant differences in both PMRE90 and PMRLA between the arrangement structures. Our findings reveal the potential mechanisms of vegetation in reducing PM2.5 according to arrangement structure and density. This highlights the importance of efficiently using urban green spaces with spatial constraints on PM2.5 mitigation in the future.


Assuntos
Poluentes Atmosféricos , Pinus , Quercus , Árvores/química , Material Particulado/análise , República da Coreia , Poluentes Atmosféricos/análise
2.
Sci Rep ; 13(1): 20287, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985886

RESUMO

The interspecific responses to alarm signals may be based on unlearned mechanisms but research is often constrained by the difficulties in differentiating between unlearned and learned responses in natural situations. In a field study of two Paridae species, Parus minor and Sittiparus varius, who originated from a common ancestor 8 million years ago, we found a considerable degree of between-species overlap in acoustic properties of referential snake-alarm calls. Playback of these calls triggered unlearned adaptive fledging behavior in conspecific and heterospecific naive nestlings, suggesting a between-species overlap in the hypothetical unlearned neural templates involved in nestlings' reactions to alarm calls in both species. This suggests that similar calls and similar unlearned sensitivity might have been present in the common ancestor of the two species, and possibly in the ancestor of the whole family Paridae that originated 10-15 million years ago in Asian regions rich in snakes.


Assuntos
Passeriformes , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Aprendizagem , Evolução Biológica , Acústica , Serpentes
3.
PLoS One ; 18(7): e0288774, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37478081

RESUMO

Air pollution and climate change amplify the urban heat island (UHI) effect, which has an adverse effect on human health. Urban forests (UFs) are important to reduce the UHI effect; however, the quantitative effect of UFs on UHI, relative to time and space, has not yet been investigated. In this study, we aimed to quantitatively measure the actual thermal environment in UFs. To this end, temperature and humidity loggers were installed in 17 UFs in Seoul for a year and analyzed according to vegetation characteristics and accessibility. The urban forests and park showed consistent temperature reduction, whereas the lawn showed higher temperature reduction effects during autumn-winter. The traffic island showed lower annual temperature reduction effect than other UFs. From spring to autumn, mixed and broadleaved forests showed better temperature reduction effect than coniferous forests. The temperature in UFs decreased by approximately 1.9°C over ~3 km from the traffic island near the city to the forest. This study revealed the difference in the cooling effect according to the type and location of UF and the vegetation structure. The functional characteristics of plants and the UF that reflects them can help reduce the negative impact of climate warming and UHI on human health.


Assuntos
Florestas , Temperatura Alta , Humanos , Seul , Cidades , República da Coreia
4.
Sci Rep ; 13(1): 5486, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016024

RESUMO

Atmospheric particulate matter (PM2.5) can damage human health. Biogenic organic compounds emitted from trees may increase the concentration of PM2.5 via formation of secondary aerosols. Therefore, the role of biogenic emissions in PM2.5 formation and the sources of PM2.5 need to be investigated. Dual carbon isotope and levoglucosan analyses are powerful tools to track the sources of total carbon (TC) in PM2.5. We collected a total of 47 PM2.5 samples from 2019 to 2020 inside a pine forest and in urban areas in South Korea. The average δ13C and Δ14C of TC in PM2.5 at the Taehwa Research Forest (TRF) were - 25.7 and - 380.7‰, respectively, which were not significantly different from those collected at Seoul National University (SNU) in urban areas. Contribution of fossil fuel, C3-, and C4- plants to carbonaceous component of PM2.5 were 52, 27, and 21% at SNU, whereas those were 46, 35, and 19% at TRF, respectively. The biomass burning tracer, levoglucosan, was most abundant in winter and correlated with the contribution of C4 plants derived carbon. Results indicate that biogenic aerosols emitted from trees is less likely to be an important source of PM2.5 and that trees can act as a bio-filter to reduce PM2.5.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Carbono/análise , Florestas , Aerossóis/análise , Biomassa , Estações do Ano , Monitoramento Ambiental/métodos , China
5.
Environ Pollut ; 327: 121481, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003584

RESUMO

This study is the first report on atmospheric microplastics (MPs) observed in five outdoor environments, including an urban forest, a business center, commercial areas, and a public transportation hub in Seoul, South Korea. Air samples were collected using an active air pump sampler for 24 h in each area only on days without rainfall. All observed microplastics are secondary microplastics, in the form of irregularly-shaped fragments or fibers produced through various degradation processes, rather than being primarily produced like microbeads. The abundance of atmospheric MPs varied depending on the environment (i.e., region, height, and time) from 0.33 to 1.21 MP m-3, with the average number of MPs being 0.72 MP m-3 (standard deviation ± 0.39). MPs in the urban forest was observed to be 27% lower in abundance than that in the urban center which is ∼3 km away. The central business district was observed to have a 25% higher abundance during weekdays than on weekends. Our results show the ubiquity of MPs in various areas from high-rise buildings to forests tens of kilometers away from their direct sources, and a positive correlation between the abundance of MP and human activity. Morphologically, the fragment type (87.4%) predominated over the fiber type (12.6%), and chemically, polypropylene (PP) and polyethylene terephthalate (PET) components accounted for 65% of the total MP. PP polymers were found in all observation sites and contributed to 59% of the total MP fragments. The observed fibrous MPs were mainly composed of PET (72.7%) and PP (18.2%) polymers. Compared to other large cities (Shanghai, Beijing, Paris), Seoul is exposed to low levels of atmospheric MPs and high proportions of PP polymers. This study is limited to atmospheric MPs observed in summer and further investigation of MPs is needed to comprehensively understand the distribution and cycle of MPs based on long-term monitoring of atmospheric MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Seul , Monitoramento Ambiental , Poluentes Químicos da Água/análise , China , República da Coreia , Polipropilenos , Polietilenotereftalatos
6.
PeerJ ; 11: e14674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36785709

RESUMO

Background: Green areas are thought to reduce particulate matter (PM) concentrations in urban environments. Plants are the key to PM reduction via various mechanisms, although most mechanisms do not lead to the complete removal of PM. Ultimately, PM falls into the soil via wind and rainfall. However, the fallen PM can re-entrain the atmosphere, which can affect plants capacity to reduce PM. In this study, we simulated an urban green floor and measured the resuspension of PM from the surface using a new experimental system, a wind tunnel-mounted closed chamber. Methods: The developed system is capable of quantifying the resuspension rate at the millimeter scale, which is measured by using the 1 mm node chain. This is adequate for simulating in situ green floors, including fallen branches and leaves. This addressed limitations from previous studies which focused on micrometer-scale surfaces. In this study, the surfaces consisted of three types: bare sand soil, broadleaves, and coniferous leaves. The resuspended PM was measured using a light-scattering dust detector. Results: The resuspension rate was highest of 14.45×10-4 s-1 on broad-leaved surfaces and lowest on coniferous surfaces of 5.35×10-4 s-1 (p < 0.05) and was not proportional to the millimeter-scale surface roughness measured by the roller chain method. This might be due to the lower roughness density of the broad-leaved surface, which can cause more turbulence for PM resuspension. Moreover, the size distribution of the resuspended PM indicated that the particles tended to agglomerate at 2.5 µm after resuspension. Conclusion: Our findings suggest that the management of fallen leaves on the urban green floor is important in controlling PM concentrations and that the coniferous floor is more effective than the broadleaved floor in reducing PM resuspension. Future studies using the new system can be expanded to derive PM management strategies by diversifying the PM types, surfaces, and atmospheric conditions.


Assuntos
Poluentes Atmosféricos , Traqueófitas , Material Particulado/análise , Poluentes Atmosféricos/análise , Poeira/análise , Clima , Plantas
7.
Ecol Evol ; 11(4): 1492-1500, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613984

RESUMO

Increased concentration of airborne particulate matter (PM) in the atmosphere alters the degree of polarization of skylight which is used by honeybees for navigation during their foraging trips. However, little has empirically shown whether poor air quality indeed affects foraging performance (foraging trip duration) of honeybee. Here, we show apparent increases in the average duration of honeybee foraging during and after a heavy air pollution event compared with that of the pre-event period. The average foraging duration of honeybees during the event increased by 32 min compared with the pre-event conditions, indicating that 71% more time was spent on foraging. Moreover, the average foraging duration measured after the event did not recover to its pre-event level. We further investigated whether an optical property (Depolarization Ratio, DR) of dominant PM in the atmosphere and level of air pollution (fine PM mass concentration) affect foraging trip duration. The result demonstrates the DR and fine PM mass concentration have significant effects on honeybee foraging trip duration. Foraging trip duration increases with decreasing DR while it increases with increasing fine PM mass concentration. In addition, the effects of fine PM mass concentration are synergistic with overcast skies. Our study implies that poor air quality could pose a new threat to bee foraging.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30634488

RESUMO

An increasing number of studies have suggested benefits of greenness exposure on mental health. We examined the association between urban greenness and depressive symptoms in adults in the general population living in the seven major cities in Korea (N = 65,128). Using data from the Korean Community Health Survey 2009, depressive symptoms were measured on the Center for Epidemiological Studies Depression Scale (CES-D). Greenness was assessed using Normalized Difference Vegetation Index (NDVI) and land-use data (forest area and forest volume). Logistic regression models were fitted to adjust for potential confounders. Individuals in regions with the highest NDVI (quartile 4) had the lowest odds for depressive symptoms compared to quartile 1, after adjusting for potential confounders (OR = 0.813; 95% CI: 0.747, 0.884). For all greenness indicators except for forest area per district area (%), the highest rate of depressive symptoms was found for the individuals in the lowest quartile of greenness (quartile 1) and the lowest rate of depressive symptoms for those in the highest quartile of greenness (quartile 4). We found an inverse association between urban greenness and depressive symptoms, which was consistent across a variety of greenness indicators. Our study suggests health benefits of greenness and could provide a scientific basis for policy making and urban planning.


Assuntos
Depressão/epidemiologia , Meio Ambiente , Adulto , Feminino , Florestas , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Plantas , República da Coreia/epidemiologia , Saúde da População Urbana
9.
Anim Cells Syst (Seoul) ; 21(1): 70-75, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30460053

RESUMO

We examined the influence of tree thinning on the abundance of mammals in a Japanese larch Larix kaempferi plantation in Mt Gariwang, Pyeongchang, South Korea. In 2014 and 2015, from April to October, we recorded the presence of tracks as a proxy for abundance, for the following seven mammalian species: Korean hare Lepus coreanus, raccoon dog Nyctereutes procyonoides, Siberian weasel Mustela sibirica, Eurasian badger Meles meles, water deer Hydropotes inermis, roe deer Capreolus pygargus, and wild boar Sus scrofa. We also assessed how the intensity of tree thinning affected vegetation cover; there were significant differences in number of standing trees, basal area, coverage of vegetation layers, and number and volume of downed trees among the control, moderately thinned, and intensively thinned stands. We found significant differences in the abundance of tracks among the stands for three mammal species. In four mammal species, the abundance of track was significantly correlated with volume of downed trees, coverage of ground vegetation, number of downed trees, and number of standing trees, according to stepwise analysis. The presence and abundance of mammals is linked to habitat variables and forest managers should consider how habitat modifications will affect wildlife.

10.
Ecol Appl ; 26(2): 448-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27209787

RESUMO

(1) Land-use intensification in agricultural landscapes has led to changes in the way habitats and resources are distributed in space. Pests and their natural enemies are influenced by these changes, and by the farming intensity of crop fields. However, it is unknown whether the composition of landscapes (amount and diversity of land cover types) or their configuration (spatial arrangement of cover types) are more important for natural enemy diversity, and how they impact crop damage and yields. In addition, effects of interactions between local farming practices (organic vs. conventional) and landscape variables are unclear. (2) Here, we make use of a data set where landscape composition and configuration were uncorrelated across multiple spatial scales. Natural enemies, crop damage, and yields were sampled in 35 organic and conventional crop fields. Out of seven broad natural enemy taxa, five were positively affected by a complex landscape configuration. In contrast, only carabids were positively affected by the amount of seminatural habitat around fields. Increasing diversity of land cover types had positive effects on some, but negative effects on other taxa. Effect sizes varied among taxa but increased with increasing spatial scale, defined by circular areas of increasing radius around fields. (3) The diversity of aerial, but not of ground-dwelling enemies was higher in fields under organic than conventional management. Interactions of local and landscape variables were important for birds, but not other enemies. Bird richness was higher in organic fields in simple landscapes, but not in landscapes with complex configuration or high land cover diversity. (4) Crop damage decreased with landscape diversity, but increased in conventional fields with complex configuration. Yields increased with both parameters in conventional fields only, and were higher on average in organic compared to conventional fields. Enemy diversity was positively related to crop damage, indicating positive density-dependence of enemies on pests. However, the diversity of aerial enemies was also positively related to yields. (5) Our results suggest that the effectiveness of agrienvironmental schemes for managing natural enemy diversity, crop damage and yields could be enhanced by optimizing the effects of distinct landscape parameters, particularly landscape configuration and diversity, across scales.


Assuntos
Artrópodes/fisiologia , Aves/fisiologia , Produtos Agrícolas/fisiologia , Herbivoria/fisiologia , Comportamento Predatório , Animais , Ecossistema , Modelos Biológicos , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...